|
|
Come calcolare una varianza campionariaLa formula per il campione varianza è s ^ 2 = 1 /( n - 1 ) Σ [ ( x_i - x ¯) ^ 2 ] . ( Il " x_i " significa x pedice i. ) Ma per molte persone , decifrare questa formula può essere scoraggiante . Semplificando questa formula , varianza campionaria può essere trovato in un way.Things molto più facile e più gestibile che ti serviranno calcolatrice grafica carta Scratch Pencil Mostra Altre istruzioni 1 Trova la media , o medio , dei dati del campione set. Per esempio , se i dati impostati erano { 4 , 9 , 10 , 22 , 5 } , la media sarebbe la somma di tutti i numeri diviso per il numero di numeri separati nel dato insieme di dati : ( 4 +9 +10 + 22 +5 ) /5 = 10 . Questo valore è x ¯ . Il numero di numeri separati nel data set di dati è n . Sottrarre x ¯ da tutti i valori nel set di dati . Utilizzando l'esempio , il set di dati prodotta da questa sottrazione assomiglia a questo : { 4-10 , 9-10 , 10-10 , 22-10 , 5-10 } = { -6 , -1 , 0 , 12 , -5 } . Trovare il quadrato di ciascuno dei valori nei nuovi set di dati . { ( -6 ) ^ 2 , ( -1 ) ^ 2 , ( 0 ) ^ 2 , ( 12 ) ^ 2 , ( -5 ) ^ 2} = { 36 , 1 , 0 , 144 , 25 } Trova la somma di tutti questi numeri . 36 +1 +0 144 +25 = 206 Questo valore è Σ [ ( x_i - x ¯) ^ 2 ] . dividere la somma dal set precedente n - 1 . Ricordate , n rappresenta quanti numeri erano nel set di dati originali . Poiché non vi erano cinque numeri della serie di dati , l'esempio deve essere diviso per 5-1 o 4 . 206/4 = 51,5 Il valore di cui sopra è s ^ 2 . trovare la radice quadrata del valore di cui sopra . sqrt ( 51,5 ) = 7,1764 il valore sopra è la varianza campionaria . Università (College)
|
|
Copyright © https://www.educazione.win - Tutti i diritti riservati |