|
|
Come risolvere un triangolo isoscele con angoliCalculator Mostra Altre istruzioni triangolo isoscele con due angoli noti 1 Utilizzare le proprietà dei triangoli per trovare il terzo angolo . Per esempio, prendiamo un triangolo isoscele con angoli A , B e C dove angoli A e B , eguagliano 75 gradi e l'angolo C è sconosciuta . Poiché gli angoli di ogni triangolo sarà uguale a 180 gradi , l'angolo sconosciuto può essere trovato aggiungendo i due angoli conosciuti insieme e sottraendo la somma di 180 . In questo esempio , 180 = A + B + C = 75 + 75 + C = 150 + C. Sottrai 150 da 180 per scoprire che l'angolo C è uguale a 30 gradi . usare la legge di Sines per trovare il lato rimanente . Utilizzando l'esempio nel passo 1 , assumere lati A e B pari 7 e lato c è sconosciuta . La legge di Sines afferma che un /sin A = b /sin B = c /sin C. Trova lato c inserendo i valori : 7/sin 75 = c /sin 30 multipla di entrambe le parti di peccato 30 per ottenere : c = sin 30 * ( 7/sin 75 ) . Utilizzare la calcolatrice per risolvere : c = 0,5 * (7/0.966) = 0,5 * 7,246 = 3,623 Usa la Legge . di Sines determinare gli angoli rimanenti . Utilizzando l' esempio precedente , supponiamo che angoli A e B sono sconosciute e angolo C = 30 gradi . Lati A e B = 7 e lato c = 3,623 . Prendere la formula b /sin B = c /sin C. invertire la frazioni di ottenere sin B /b = sin C /c . Collegare i valori: . Sin B /7 = sin 30/3.623 Moltiplicare entrambi i lati del 7 per ottenere sin B = (sin 30/3.623 ) * 7 Utilizzare la calcolatrice per risolvere. : sin B = (0.5/3.623) * 7 = 0,138 * 7 = 0,966 Utilizzare la calcolatrice per trovare l' inversa del seno : . arcsin B = arcsin 0,966 = 75 gradi . Poiché gli angoli A e B sono uguali , A = B = 75 gradi . Scuola media
|
|
Copyright © https://www.educazione.win - Tutti i diritti riservati |