|
|
Come modificare la variabile di integrazione1 Usate la regola della catena per i derivati ( la derivata di f ( g ( x ) ) = f ' ( g ( x)) * g ' ( x ) , o un derivato dei tempi di fuori derivata della interno) . Integrazione per sostituzione è un po 'come la regola della catena in senso inverso . Identificare f' ( g ( x)) e g ' ( x ) nella funzione che si devono integrare. In altre parole , guardare la funzione è necessario integrare un po 'diverso . Ad esempio, se la funzione è la seguente : ∫ ( 10 x ^ 4 ) /( 20 + 2 x ^ 5 ) dx noti che 10 x ^ 4 è la derivata di 20 + 2x ^ 5 . In questo tipo di rapporto , creare una nuova variabile chiamata u e impostarla uguale alla parte il cui derivato appare altrove nella funzione . In questo esempio , quindi , u = 20 + 2x ^ 5 Prendere la seguente funzione , ad esempio: . ∫ -2 E ^ - x dx Dire che u = - x , dato che, sebbene -2 non è la derivata di - x , è vicino . Moltiplicare la derivata di - x per 2. Sostituire u e u ' , che è la derivata di u , nella vostra equazione al posto di x- funzioni. Nell'esempio di cui sopra , per esempio , vorremmo cambiare la nostra equazione per assomigliare a questo : ∫ u ' /u dx Cosa succede se u ' è fuori da qualche valore intero ? In questo caso , abbiamo ancora sostituiamo in u e u ' , ma correggiamo l'equazione dividendo o moltiplicando per tale valore intero , se necessario . Guardiamo l'esempio precedente : ∫ -2 E ^ - x dx Sappiamo che u = - x , quindi u ' = -1 . Ciò significa che -2 = u ' * 2 , così quando sostituiamo finiamo con un'equazione che assomiglia a questo : ∫ 2 u ' ( e ^ u) dx Nota che u ' e dx insieme fanno du e riscrivere l'equazione di conseguenza. Nei due esempi precedenti , per esempio , il risultato è simile al seguente : ∫ 2 e ^ u du ∫ 1 /u du Valutare l'integrale utilizzando le regole di base di integrazione . Se non vi ricordate tutti, guardate il link nella sezione Risorse di seguito ; esso contiene una tabella di integrali comuni . Nei problemi di esempio , si dovrebbe ottenere i seguenti risultati : ∫ 2 e ^ u du = 2 e ^ u ∫ 1 /u du = ln u Sostituire u del valore originario di nuovo nell'equazione al posto di u . Negli esempi , si finirebbe con il seguente : 2 e ^ u = 2 e ^ - x ln u = ln ( 20 + 2x ^ 5 ) doppio controllare la vostra risposta prendendo la derivata per assicurarsi che sembra proprio come l'equazione originale avevi quando hai iniziato il problema . Università (College)
|
|
Copyright © https://www.educazione.win - Tutti i diritti riservati |